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Mixing of dense fluid in a turbulent pipe flow 
Part 2. Dependence of transfer coefficients on local stability 

By T. H. ELLISON AND J. S. TURNER 
Department of the Mechanics of Fluids, University of Manchester 

(Received 5 January 1960) 

This paper continues an investigation into the mixing of a dense layer of salt 
solution in a turbulent pipe flow in order to obtain a more detailed understanding 
of the underlying physical processes. The effect of the density difference on the 
velocity profile in a sloping pipe is calculated using a simplified model, and the 
results compared with direct measurements obtained by timing streaks of dye 
at various levels in the pipe. These velocity profiles are also used in conjunction 
with density profiles to es'timate the dependence of the transfer coefficients for 
salt and momentum, K, and K M ,  on stability. 

It is found that Ks is much more greatly affected by the density gradient than 
KM, and that the ratio Ks/KM may be represented, to the accuracy of the experi- 
ments, as a function of the local Richardson Number Ri. The results agree with 
what is known of K,/KN in neutral and very stable conditions, and they confirm 
an earlier prediction by Ellison that the critical flux Richardson number, at 
which K ,  becomes zero, is much less than unity. 

Finally, a crude semi-empirical method is outlined which indicates how the 
new measurements of the transfer coefficients may be related to the overall 
properties of the flow discussed in the first part of the paper. 

1. Introduction 
The first part of this paper (Ellison & Turner 1960) presented the results of 

measurements of the mixing of dense fluid in a turbulent stream in terms of 
density profiles alone. Although this is adequate for the application of the results, 
and may indeed be more directly useful than a more fundamental approach, a 
real understanding of the underlying physical phenomena can only be achieved 
by studying the mechanism of the flow in more detail. As the next step, this 
paper discusses the flow using concepts which also require a knowledge of the 
velocity gradients and the manner in which they are changed by the presence of 
a dense layer in the pipe. Simultaneous measurements of velocity and density 
profiles are recorded, and those for occasions when the condition of the flow 
was especially simple are analysed to give the turbulent transfer coefficients 
for salt and momentum, K, and Kaf,  in terms of the local Richardson number. 
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2. The velocity profile 
The density gradients can affect the velocity in several ways. In  a tilted pipe 

with the flow uphill, even if K, is not affected directly, the component of the 
weight of a layer of heavy fluid along the pipe will reduce the velocity near the 
floor and increase it near the roof. This distortion will itself lead to  a change in the 
stress distribution and hence lead to  a change in KIM, although the effect may not 
be great. Thirdly, there is the direct stabilizing effect of the density gradient 
which may modify the relation between K ,  and the stress distribution. Since 
the heavy fluid spreads as it becomes mixed, the magnitudes of these effects 
change with distance producing accelerations which further complicate the flow. 

It is difficult to separate the various modes of action of the density gradient 
experimentally, but for a given density profile the first, which depends solely on 
the weight of the layer, can be calculated. After setting down the equations of 
motion in full for future reference, we shall describe such a calculation and con- 
sider how far it explains the observed velocity profiles. 

Equations of motion 

Let the x-axis be along the pipe which slopes upwards at  an angle a, and the 
z-axis across the pipe perpendicular to its floor. Then on the usual assumption 
that the variation of density may be neglected in the inertia terms, the x-com- 
ponent of the equations of motion may be written as 

U-+W-+-+Asina--[(KM+v)E] au au ap a = 0, 
ax ax ax a2 a2 

where p is the pressure divided by the density of the ambient fluid, pa, and 
h = g(p -pa) /pa .  If we neglect the turbulent pressures, we may relate p at any 
height to its value at the roof pr through the hydrostatic equation; so 

D 
p = p,+ ( Acosadz’. (2) 

J e  

We also have the continuity equation 

au aw 
ax az 
-+- = 0. 

If we make use of these and integrate (1) from x to D, we obtain 

(3) 

dd- UW+ ( D  - z )  (x’ - x )  A(z’) cos adz’ 

where rr is the stress at the roof. In  the particular case when U and A are inde- 
pendent of x, this simplifies to 

(N-z)g+/eDAsinadz’+(KM+v)-  au = 0, 
az (5) 

where M is defined by (D - M )  dpJdx = -?,/pa. 
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The theoretical modijcation of velocity due to weight alone 

We shall now use a simple theoretical model in which KM is held fixed at its 
neutral value and approximated by a parabola to investigate how much the 
weight of the layer modifies the velocity profile. The density profile will be taken 
to have a triangular form, falling linearly with height from a surface value As to 
zero at a height hA. This form is quite close to the observed density profile in all 
but very concentrated layers except in small regions near the floor and near TLg; 
since only an integral of the density profile enters the calculation, these regions 
may be neglected and i t  is not difficult to represent observed profiles by equiva- 
lent triangles. 

Thus, our assumptions are 

A = As 1 -- for z less than h,, 

for greater than h,. (7) 
( {A) 

= o  
We also assume that U is zero at the same distance zo from the roof and the floor, 
and that zo may be considered constant; we take zo/D = 2 x lo4, which is the 
value appropriate to smooth flow at the Reynolds number of our experiments. 

For convenience we introduce the following dimensionless variables: 

ll = D2K;1U;ldp,./dx; p = MID; 6 = D2K;lU;lASsina; 

where Ud = D-l 

was introduced in the first part of this paper, is given by 

Udz.  Then we see that the pipe Richardson number, which s," 
Rip = U;3JoDAUcosadz = r6KoD-1U;lcota. 

If molecular viscosity is neglected, it follows from ( 5 )  that 

Hence after integration, 

34-2 
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p and ll may now be found from the conditions that U is continuous at 6 = 5 and 

that s,' dc = 1. We obtain 

) (10) 
- 2 +S[ -Q+ +6 - :51n6/(so+ (1 - +<-l- $6) In (1 __ - 0 1  

In &l- 2 
= ___ 

and 

The dimensionless salt flux IT can be evaluated in an elementary manner using 
(7) and (Q), and is given by 

IT = pl l [+  - i t l n  </co - aln (1 - t)] 
+ fI[aln (1 - 5) - 4 + 261 
+ 6[a2 In (1 - 6) - it2 In [/co + 46-1 + %< - $1) (12) 

where a has been written for (1 - 46 - * < - I ) .  

Ri, tan a 

FIGURE 1. The height of the velocity maximum in an inclined pipe containing heavy salt 
solution aa a function of Ri,.tan a. The curve drawn is theoretical, and individual experi- 
mental points are shown. 0 , 6 "  ; + , 20" ; x , 74" ; A, 30" ; 0, 10". 

With a knowledge of IT it is simple to calculate Rip. Since in each of our 
experiments Rip is independent,of x it  is convenient to make it the indepen- 
dent variable and to regard the profiles as functions of Rip and 6. The depen- 
dence of p on 6 for a fixed value of Rip tana  turns out to be so weak that ,u 
can be represented adequately as a function of Rip tan a alone; this is plotted 
in figure 1 together with our observations of the height of the velocity maximum, 
which are further discussed below. n also depends very little on 6) and it is 
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clear that the distortion of the profile is much more closely governed by the 
channel Richardson number than by the depth of the layer, and we should 
not expect much change in velocity as the layer spreads. This provides some 
justification for the use of the simplified form of the equation of motion in 
which U and A are assumed to be independent of 2. A comparison between a 
typical theoretical profile and observation will be discussed after the techniques 
of measurement have been described. 

The measurement of velocity 
Several methods were tried before consistent measurements of velocity were 
obtained. The low velocities made it impossible to use Pitot tubes, and at first 
an attempt was made to use thermistors as in an earlier investigation (Ellison & 
Turner 1959). They proved to be too inaccurate owing to  the sensitivity of the 
system to ambient temperature, to the non-linearity of the calibration which 
caused difficulty in averaging the highly fluctuating velocity, and to the obstruc- 
tion to the flow which became important when the thermistor was traversed 
more than half way across the pipe. 

Later, a twisting wire device was tried, in which the deflexion of a fine steel 
wire set across the flow was observed with a microscope. This also failed to give 
the required accuracy, possibly because the drag of a cylinder depends on the level 
of turbulence in the stream. 

The useful measurements were taken using the most direct method of all, that 
of timing streaks of dye released into the stream. Moveable opaque guides were 
placed on each side of the pipe so that they could be set at any given height and 
the motion of the dye along their open edge followed; the measurements were 
made between fixed marks drawn 30 cm apart at the positions of the salt probes. 
It was possible to time to the nearest &sec in about 2 sec, and the variations 
greater than this were due to real variations in velocity from one realization of 
the flow to another; the average of ten readings was taken at each height and the 
standard deviation of this was about 3 %. In  order to achieve this accuracy it 
was necessary to have an adequate length of pipe between the point of introduc- 
tion of the dye and the first mark, so that the general appearance of the dye did 
not change appreciably between the stations. Systematic errors are likely to be 
small except near the roof or floor where the velocity gradient is high and one can 
unconsciously follow material at  the wrong level. 

Our estimates of the velocity gradients are, of course, much less accurate than 
those of velocity itself, and may be in error by 10 % ; this means that our esti- 
mates of the local Richardson number may be out by 20 yo due to the uncertainties 
of velocity alone. 

We also attempted to measure velocity variations in the direction of flow by 
timing over overlapping intervals at  the same height; we found that, except with 
very concentrated salt layers, the variations were less than the experimental 
errors in accordance with the theoretical prediction mentioned above. 

The experiments were conducted using two standard discharge velocities, 
13.5 and 10.6 cm s-l, the majority being at the higher speed which is that used for 
the measurements reported in the first part of this paper. 
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Comparison with simple theory 
Examples of measured velocity profiles are shown in figures 2 and 3. In  figure 2 
the experimental points (crosses) are compared with the theoretical curve calcu- 
lated by the method outlined above; the measured density profiles and the 
‘equivalent triangle’ assumed for the purpose of the calculation are also shown. 

1.0 

0 

Velocity (cm s-l) 

I I I 
I I 

0 0.5 1.0 1 3 
A (cm 

FIUURE 2. Comparison of observed and calculated velocity profiles in a pipe inclined at 
20’; Ri, = 0.0090. The density profiles 30 em apart and the ‘equivalent triangle’ used in 
the calculation are also shown. 

The general shape of the velocity profile is adequately represented by the 
theory, although the slopes of the theoretical curve are somewhat greater than 
those corresponding to  the measured points in this instance. The height of the 
velocity maximum is well predicted; the more extensive measurements of this 
quantity shown in figure 1 also confirm that in spite of considerable scatter there 
is no systematic difference between the theory and the measurements. Thus it 
appears that the assumption that KM is unchanged by the presence of the dense 
fluid is a fair first approximation and that the direct action of the weight of the 
layer is the most important factor distorting the velocity profile. 

This suggests the possibility of using the theory in order to estimate the velo- 
city gradients entering into the expression for the local Richardson number. For 
the determination of the dependence of K, and K M  on Ri, we have preferred to 
use directly measured velocity profiles; but in $6 below we do develop an em- 
pirical extension of the theory in order to relate the eddy transport coefficients 
to the rate of increase of the depth of the layer described in detail in Part 1. 

The theory is, of course, at its weakest when one considers thin concentrated 
layers at low slopes, since in these the effect of stability in reducing KM is rela- 
tively more important. 
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3. The momentum transfer 
From the measurements of velocity described in the last section and the 

density profiles obtained by the method described in Ellison & Turner (1959), 
it is possible to estimate the eddy viscosity KIM. The analysis was confined to 
occasions when the layer was not too thin and the velocity changed little in the 
x-direction. Then, since the only term in (4) depending on aA/ax, namely 

&f," (z' - z )  A@') cos adz ' ,  

is quite negligible, it is permissible to use ( 5 ) .  

I I I I 

Velocity (em s-l) Stress (ema s - ~ )  

I I I 10 x density flux (em2 s-3) 
0 0.5 1.0 

A (cm s - ~ )  

Ks.  KM (emz s-l) Ri 

FIGURE 3. Turbulent transfer in a pipe inclined at  10"; Ri, = 0.0037. (a) Measured 
velocity and density profiles. 0, Density a t  40 em; 0, density at 70 cm; x , velocity. 
(b)Distributionsofstressanddensityflux. 0, - (KM+ v ) d U / d z ;  0 ,  -Ks(dA/dz). (c)Transfer 
coefficients for salt (Ks )  andmomentum (KM).  0, K,; 0 ,  Ks. (d)LocalRichar&onnumber, 
Ri. 

However, (5) contains two unknown quantities, dp,/dx and M .  In  order to 
measure the pressuregradient directlya much more uniform pipe than ours would 
be required, even if the considerable difficulties of devising and using a suf- 
ficiently sensitive manometer could be overcome. We therefore had to make two 
assumptions to fix dp,/dx and M : 
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(a)  the friction coefficient relating the stress on the roof to the discharge 

( b )  the total stress is zero at the height of the velocity maximum. 
The first of these assumptions is unlikely to be far wrong, since there is never 

sufficient density gradient in the top half of the channel to give rise to any signi- 
ficant stability effects. The second assumption is not so satisfactory either theo- 
retically or in practice. Although the idea behind the use of an eddy viscosity 
implies that the stress vanishes when the velocity gradient does, there is no 
theoretical reason for believing that this happens exactly; and in practice the 
measured velocity maxima are broad, making the determination of the position 
of no stress difficult and thus introducing another considerable source of error. 

If these assumptions are accepted, KM can be found from (5). However, reason- 
ably consistent results could not be obcained either in the centre of the pipe where 
the velocity gradients are small and KM is the ratio of two small quantities, or 
near the floor where the velocity gradients are too high to be determined by our 
technique. Our most accurate results are therefore restricted to the two heights 
1-0 and 1.5 cm. Measurements a t  these positions have the additional advantage 
that usually the density flux and Richardson number are changing less rapidly 
with height in this region than elsewhere (see figures 3 b and d). 

In  figures 3a, b and c are shown typical velocity and’density profiles and the 
variation with height of the stress and eddy viscosity derived from them. We 
shall return to discuss the results of all the experiments analysed in this way 
after describing the calculation of the eddy diffusivity . 

velocity is the same as at the same Reynolds number without any salt flow ; 

4. The salt transfer 
In the steady state, with the neglect of turbulent transfer in the direction of the 

flow and of the minute contribution of molecular diffusion, the equation for the 
transfer of salt may be written 

When the velocity is independent of 2, so that W = 0, this simplifies to 

The salt flux is zero at the top and bottom of the channel so the integral takenfrom 
0 to D should be zero if U is in fact independent of x; and, in the absence of 
measurements of aU/ax on every occasion, this has been used as a check in select- 
ing runs for analysis. Values of the salt flux and of K, calculated from (14) are 
included in figures 3 b, and c. 

5. The dependence of KM and K, on the local Richardson number 
It is clear that KIM and Ks must depend on the stability, but since the scale of 

turbulence is such that any eddy covers a considerable height range, it is by no 
means obvious that there should be a simple dependence on a strictly local para- 

meter such as aa auz 
= -z/(a;) 
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which changes with height as is shown for a typical occasion in figure 3 d .  Never- 
theless, the curve obtained when the results are analysed in this way is very 
encouraging. 

The eddy viscosity 

The dependence of the eddy viscosity on the Richardson number has been 
discussed in the meteorological literature (see Charnock 1958 for a recent review). 
It is usual (Deacon 1955) to consider the dimensionless quantity K& = KM/u* z, 

1 .c 

& 

* 
0 5  

n 
- 0.2 

’ 
A ’  i: O A 

A “ ’ o ’ a - e , - -  

A 0 

0 

Ri 
t o 5  

FIGURE 4. Measurements of the non-dimensional eddy viscosity K:/k as a function of 
local Richardson number. A A, 1.0 cm; 0, 1-5 cm. The curve drawn represents an 
average of the atmospheric measurements reported by Rider (1954). 

where ug is the friction velocity defined by ug = 1liMa77/azI4. In  figure 4 
Kglk,  where k is von Karman’s constant, is plotted as a function of Ri together 
with a curve which represents an average of Rider’s (1954) widely scattered 
atmospheric measurements. Rider was mainly concerned with unstable con- 
ditions and took only a few measurements in the range of Richardson numbers 
for which we have dotted the curve. 

Our measurements are also scattered, but they confirm the trend for K& to 
fall below its neutral value, k, as Ri is increased. These results and those shown 

later for K,  have been grouped according to the accuracy with which s,” U dz‘ 

is zero. In  the first group (indicated in the figures by solid symbols) are experi- 
ments for which the integral is zero to within the experimental accuracy; in the 
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second group (indicated by open symbols) are those for which the negative part 
of the integral at the bottom of the pipe is up to 50 % higher than the top part, 
indicating a small but probably negligible vertical velocity near the bottom of the 
pipe. Lastly, there are the experiments shown by crosses in some of the figures 
in which the criterion is clearly not satisfied. These correspond to cases when 
there was a very concentrated layer near the floor, and for which even from visual 
observation we should expect W to be important. 

Neutral 

The ratio KsfKM 
When we come to compare the ratio K, to KM, the scatter is less important 
since the dependence on Ri is more dramatic. In  figure 5 are shown all the results 
at the two heights of 1.0 and 1.5cm. The points for which significant values of 
W have been ignored lie low in the left-hand corner of the diagrams, which is to 

1.5 1 I I I I I I (  I I I I I 1 
J. 

Local Richardson number Ri 

FIGURE 5. The ratio K ~ / K M  as a function of the local Richardson number; (a) a t  1.5 em; 
(b) a t  1.0 em. The solid symbols refer to occasions when the vertical velocity was zero; 
the open symbols to occasions when it was measurable, but probably negligible, and the 
crosses to cases where a signiikant vertical velocity has been ignored. 

be expected since neglect of W will increase the estimate of KIM and decrease that 
for K,; the suggested ‘best ’ curves have been drawn using only the more reliable 
points. 

The difference between the results at the two levels are systematic but not 
very large; it is hard to say whether or not it is significant or on what factors, such 
as Reynolds number, it  depends. The striking feature of the results is the sharp 
fall of Ks/KM at quite small Ri, and this will now be discussed further in relation 
to previous measurements and theories. 

Previous measurements of KsfKM 
The possibility of a dependence of Ks/KM on Ri has been discussed in the 
meteorological literature (e.g. Pasquill 1949; Rider 1954; Swinbank 1955), but 
the difficulties of measurement are great and acouracy has not been good, largely, 
we would suggest, because of the neglect of advection terms (cf. the neglect of 
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aUjax in our problem). A tendency for Ks/KM to decrease with increasing Ri 
has been found, but there is not even agreement about the value of the ratio in 
neutral conditions: Rider gets 1.3 and Swinbank about 0.8. 

Fortunately, there are more precise measurements in controlled laboratory 
conditions from which the neutral value can be found. Sherwood & Woertz 
(1939) made measurements in a nearly two-dimensional vertical duct one wall of 
which was covered with water and the other with strong calcium chloride solution, 
so that a humidity gradient was set up. They found that in the central region of 
the duct the eddy diffusivity for water vapour was around 1-5 times the eddy 
viscosity at a Reynolds number of lo5. 

Forstall & Shapiro (1950) measured profiles of velocity and helium concentration 
in a turbulent jet and also surveyed previous experimental result sfor the turbulent 
diffusion of heat (or matter) and momentum in both liquids and gases. They con- 
cluded that all the measurements led to a value for Ks/KM within 10 % of 1-40. 

I n  1952 Page, Schlinger, Breaux & Sage reported an experiment in a small 
two-dimensional duct with the floor and roof maintained at different tempera- 
tures and through which air was flowing so rapidly in relation to the temperature 
gradients that Ri was negligible. They measured the ratio of the transfer co- 
efficients as a function of position and Reynolds number, and found a value of 
1-30 at the Reynolds number used in our pipe. Later Schlinger, Berry, Mason & 
Sage using the same apparatus gave a value appropriate to our case of 1.35 and 
suggested that it decreased to about 1-1 at very high Reynolds numbers. More 
recent reports from the same laboratory (Hsu, Sat0 & Sage 1956) disagree about 
the detailed dependence on Re, but this does not have much effect on the values 
we have taken. We can assert with some confidence that in neutral conditions 
and at the Reynolds number we used, Ks/KM lies between 1.3 and 1.4; these 
limits have been marked in figures 5 and 6. 

Our previous experimental results for wall plumes (Ellison & Turner 1959) 
can be reanalysed to give K,  and KIM. The calculation is tedious since W can 
certainly not be neglected and all the terms in the equations of motion must be 
determined, but we have carried it through for one case. At the height at  which 
Ri was changing least and had a value of 0.23, we obtained K,/KM = 0.23. This 
is not inconsistent with the present series of measurements and is marked with 
them on figure 6. 

At the extreme of very high Richardson numbers, there are the frequently 
quoted measurements made in the Kattegat under conditions of very great 
stability, which have often been used to verify that the flux Richardson number, 
Rf = RiKs/KM, is always less than unity. The analysis of Proudman (1953) 
shows that Ks/KM is between 0.05 and 0.03 when Ri is in the range from 4 to 10. 
It is likely that the difference in Reynolds number between our experiments and 
the oceanographic observations is important; and, moreover, there is a strong 
probability that at very high Richardson numbers the transfer mechanism may 
be more closely associated with the breaking of internal waves than with turbu- 
lence in the ordinary sense (Stewart 1959). Nevertheless, Proudman’s estimates 
are quite consistent with an extrapolation of our results and are shown together 
with them in figure 6. 
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Ri 

FIUURE 6. The comparison of our experimental results and other available data with the 
theory of Ellison (1957). The values of the parameter Rf, are marked on the theoretical 
curves. 0, 1.6 cm; A A, 1.0 cm; *, Wall plume; m, Kattegat. 

Comparison with the theory of Ellison (1957) 

In  1957 Ellison presented a speculative theory which predicts dependence of 
K,/K, on Ri. Using the equations of motion, continuity and diffusion together 
with some assumptions concerning the rates at which the velocity and density 
fluctuations and their covariance would decay in the absence of the terms in the 
equations describing their production, Ellison arrived at an equation (numbered 
20 in his paper) of the form 

(15) 
K,  b( 1 - RffRf,) -- - 
K ,  (1-Rf)Z ' 

where b and Rf, are constants or very slowly varying functions which depend on 
the structure of the turbulence. Clearly b is the value of K,/K, in neutral con- 
ditions and Rf, is the critical value of Rf a t  which K,  vanishes. In  order to evalu- 
ate the constants, Ellison made further numerical assumptions, but we can do 
this directly from our experimental results. With Ks/KM in neutral conditions 
fixed at 1.4, say, (15) gives a family of curves connecting Ks/KM to Rf (or Ri) with 
Rf, as parameter, and these are drawn in figure 6. Our results at  1.5 cm are seen 
to be fitted best by the curve corresponding to Rf, = 0.15, but if we include our 
measurements a t  1.0 cm, the best estimate of Rf, will be nearer to 0.10. 

Note that even at higher Ri the theoretical curves are broadly in agreement 
with the Kattegat measurements. In  this range, however, the assumption that 
b and Rf, are constants independent of stability is less likely to be accurate, and 
in any case the comparison between theory and experiment is less reliable in this 
range. By using the range where Ks/KM depends strongly on stability, we have 
obtained a more sensitive comparison with theory. 
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Ellison’s original estimate for Rf, was 0-15, and our results are in surprisingly 
close agreement with this, confirming his conclusion that Rf, is much less than 
unity. This is a remarkable result, since it implies that the term representing the 
rate of working against buoyancy forces in the turbulent energy equation, which 
is commonly invoked at the beginning of discussions of turbulence in a stratified 
fluid, is never dominant; the rate of transfer of dense fluid is drastically affected 
before the direct effects of the reduction of turbulent energy could make them- 
selves felt. Further clues about the operative mechanism may be obtained from 
Ellison’s paper. The expression for the correlation coefficient between density 
and vertical velocity given by him leads to 

~- 
(W’A’)~ 1 - Rf/Rf, 

1-Rf ’ P A >  OC 

Thus as Rf approaches Rf, the correlation between velocity and density is 
destroyed more rapidly than the fluctuations themselves. This suggests the simple 
physical picture that in stable conditions a displaced fluid particle tends to return 
to its equilibrium level before it has mixed with its surroundings. A particle can 
transfer momentum during a brief excursion without mixing, but in order to 
transfer matter or heat it must mix. 

6. Conclusions 
The work we have described in this paper forms an intermediate link in the 

chain of knowledge leading from the detailed equations of motion to the magni- 
tudes of the spread of salt solution, the measurements of which were recorded in 
Part 1. On the one side it is connected to the theory, as yet very imperfect, 
relating the transfer coefficients to the local Richardson number as has been 
described in $5; and it must be possible to link it on the other side with some 
calculation of the development of the density profiles yielding values of dh/dx 
from those of and KaI. We shall outline such a calculation in an appendix. 

We may now summarize our main conclusions as follows: 
(1) In  tilted pipes the weight of the dense fluid is the dominant factor modi- 

fying the velocity profile; the changes in K ,  due to stability and to the alteration 
in the stress distribution are less important. 

(2) Our results are consistent with, but do not establish, a reduction of K,T, 
with increasing Richardson number of the magnitude suggested by the meteoro- 
logical observations. 

(3) Our measurements show that h’,/K, is strongly dependent on the Rich- 
ardson number. The form found for this dependence (figures 5 and 6) is likely to 
have wide validity, but the numerical values may be in error by 30-50 %. It must 
also be stressed that strictly they apply only to one particular region in the pipe 
and may be affected somewhat by the shape of the pipe and the Reynolds number. 

The investigation described was made in the course of work carried out for the 
Ministry of Power on problems relating to the movement of firedamp in the 
roadways of coal mines. One of us (J.S.T.) wishes to acknowledge the financial 
support of the Ministry of Power. 
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Appendix 

The relation between the measurements of KSIKM and dhldx 
If we had shown that KG and Ks/KM were everywhere exactly determined by 
the local value of Ri and had found the form of the dependence, a complete set of 
equations would be available and in principle it would be possible to start with an 
arbitrary distribution of concentration and calculate its development; but our 
measurements were much too limited for that. In  any case, such a calculation 
would be highly complex and we must beware of doing elaborate calculations on 
the basis of inadequate information. Nevertheless, it  seems desirable to make 
some attempt to relate our new knowledge of the transfer coefficients to  the rate 
of spread of the layer, and we shall therefore present a brief description of a very 
crude semi-empirical approach to the problem, which doubtless can be refined 
as understanding increases. 

For this purpose we shall again use the simple model proposed in Q 2 in which 
the density profile is assumed to be triangular. Although this form is adequate 
for calculating the distortion of the velocity profile, the actual density profiles 
do depart considerably from it in some circumstances, especially near z = h. 
We have tried several more elaborate models which take this into account, but 
the improvement in accuracy is only moderate, and we have chosen to present 
only the simplest here. 

It is convenient to divide the calculation into stages as follows. 
(a)  The determination of the local Ri at a standard height, which we have 

chosen to be &c, as a function of Rip, 6, and a. 
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( b )  The use of our empirical relation between K,/KM and Ri, together with 
the assumption that KM is given by (6), to obtain K, at the height +6 as a func- 
tion of Rip, 6, and a. 

( c )  The relation of K, to ag/ax a t  this height. 
(d) The relation of h to 6 and so the determination of dh/dx as a function of 

Rip, 6, and a. 
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FIUURE 7. Theoretical estimates of the rate of spread of the layer using experimental 
values of Ks/KM. The curves represent the measured values of this quantity which were 
reported in Part 1. E = 0.4 6 = 0.6 
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The first stage is simple since it follows from the definitions in $2  that 
Ri = rr16-1u-1Rip; cr and u are known functions of 6 and 6 (for 5 = it) and 6 
depends on 6 and Rip tan a. This means that Ri tan a is a function of Rip tan a 
and 6. The numerical dependence has been computed for two values of ( ,0.4 and 
0.6, because for these 46 corresponds to the two heights 1.0 and 1.5 cm at which we 
measured K,/KM. It is found that in both cases Ri tan a is proportional to Rip tan a 
when the quantities are small, but changes only slowly when Rip tan a is large. 
This explains an effect which proved troublesome during our experiments: it  was 
impossible to obtain large local Richardson numbers except at small slopes. 

The second stage of the calculation follows quite directly. For the third stage 
we use equation (14) and assume that we may replace U in it by U,. Then, since 
A is given by (7), 
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Now, the numerical value of hAA;l(aA,/ahA)Ri, varies little with Rip tan a and 5 

dhA 
' d  ' A  ax 

and is around - 1.2, so 
-- KN - 0-22-. 

This equation and equation (6) gives Ks/KM. 
For the last stage it is necessary only to observe that, by definition, c = A,/$, 

and so 
(19) 

The final results are shown in figure 7 .  The points represent the theoretical 
values of dhldx as a function of Rip for the slopes O", 10" and 20°, at the two values 
of 5 0.4 and 0.6, corresponding roughly to h = 1.7 em. and 2.2 om, and they are 
compared with our earlier experimental curves given in Part 1. It will be seen 
that this semi-empirical theory explains the general shape of the curves and the 
dependence on slope, and shows clearly the range of pipe Richardson number 
where stability becomes important. It is, however, less good at small values of 
Rip and predicts a dependence of dh/dx on 5 which was not observed (but which 
may, of course, be detected in more refined experiments). In  view of the very 
crude approximations that were made and the experimental difficulties at small 
Rip, these discrepancies are not surprising and the qualitative success of the 
theory suggests that further progress will be made as increasing experimental 
information enables it to be refined. 


